

http://hdl.handle.net/4263537/5030
http://hdl.handle.net/4263537/5029
http://www.mpi.nl/
http://www.mpi.nl/
http://www.lub.lu.se/netlab/
http://www.handle.net/HSj/hdl7_release_notes.html

http://hdl.handle.net/4263537/4068
http://hdl.handle.net/4263537/4068
http://java.sun.com/products/jce/index-14.html
http://www.handle.net/overviews/system_fundamentals.html#authentication

http://www.handle.net/overviews/system_fundamentals.html#sessions
http://www.handle.net/tech_manual/HandleTool_UserManual.pdf
http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.itl.nist.gov/fipspubs/fip46%1F2.htm

http://www.handle.net/tech_manual/HandleTool_UserManual.pdf
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://www.handle.net/
http://www.winzip.com/

http://hdl.handle.net/4263537/5029

http://www.handle.net/tech_manual/HandleTool_UserManual.pdf

HANDLE.NET (Ver. 7) Technical Manual

37

Example:

bin/hdl-testtool write /hsj-7.0/svr_1

Test All performs server test, write test, and Global sites client test.

bin/hdl-testtool all <config.dct>

On Windows: bin\hdl-testtool.bat all <config.dct>

Example:

bin/hdl-testtool all /hsj-7.0/svr_1

 5.5 KeyUtil

The KeyUtil.java program allows decrypting and encrypting of private key files. It can be invoked using the command:

bin/hdl-keyutil <privkey.bin>

 On Windows: bin\hdl-keyutil.bat <privkey.bin>

If you chose not to encrypt your key at installation, and later change your mind, use this program to encrypt your

existing key, and then send the encrypted file to the Handle System Administrator.

5.6 GetRootInfo

GetRootInfo retrieves a current copy of the Global service information for the Handle System. This is the information

found in the 'root_info' file.

Usage:

bin/hdl-getrootinfo <rootserver> <port> <outfile>

On Windows: bin\hdl-getrootinfo.bat <root-server> <port> <out-file>

5.7 GetSiteInfo

GetSiteInfo retrieves the service information for a handle server. This is the information found in the 'siteinfo.bin' file.

Usage:

bin/hdl-getrootinfo <server> <port> <outfile>

On Windows: bin\hdl-getrootinfo.bat <server> <port> <outfile>

HANDLE.NET (Ver. 7) Technical Manual

38

5.8 DoCheckpoint

DoCheckpoint is a command line tool to send a checkpoint/backup command to all of the handle servers in a specified

site. Execution is done with the following command:

bin/hdl-docheckpoint [siteinfo] [adminhdl] [adminindex] [keytype] [key]

On Windows: bin\hdl-docheckpoint.bat [siteinfo] [admin-hdl] [admin-index] [keytype] [key]

Keytype can be either PRIVATE or SECRET. If PRIVATE, then key is the name of a file where the private key is stored. If

SECRET, then key is the secret key itself.

HANDLE.NET (Ver. 7) Technical Manual

39

6. Replication

The handle server allows for automatic replication of handles to one or more mirror servers. These mirror servers can be

used to provide redundancy for resolution or simply as backup for disaster recovery. In sites with multiple servers,

handles are distributed evenly across the site. It should be noted that mirror servers cannot be used for handle

administration.

When servers are in the same site, the handles for that service are distributed evenly across the site. Mirrors should be

able to replicate from either the primary or existing mirrors.

6.1 Setting up a Single Mirror Handle Server

See Chapter 4, Advanced Server Configuration, for details on the configuration settings outlined below.

 Run the Setup as explained in the 'INSTALL.txt' file. Be sure to choose "Mirror Server".

 Send the resulting sitebndl.zip to the Handle System Administrator. The HSA will add the replication public key

value (replpub.bin) to your prefix, typically at index 301 (or a different index if 301 is already in use). You will be

notified when the change has been made.

 Modify the mirror's config.dct:

o server_admins, as described in the 'INSTALL.txt' file

o this_server_id (if more than 1 server in HS SITE)

o replication_authentication ("privatekey:index:handle")

 Add the replication authentication handle to the primary server’s replication_admins group.

 When the Handle System Administrator notifies you that your prefix has been updated, start the mirror server,

and restart the primary server so that it will recognize the replication handle. If you do not see handles being

replicated immediately, or see errors in the log, contact the HSA for assistance, because once the mirror’s site

info has been added to your prefix, clients will attempt to use it to resolve handles.

The 'txnsrcsv.bin' file is the 'siteinfo.bin' file from the primary server. The 'txnstat.dct' file will be created once the server

has replication information to store. When the mirror server is first started, the server has to "dump" all of the handles

from the primary server. When that process is done, the mirror server creates and saves the 'txnstat.dct' file with the

current transaction ID from each primary server.

6.2 Setting up a Second Mirror Handle Server

If the first mirror server's db file is relatively large, it may be necessary to copy the 'handles.jdb' directory, or the

'handles.jdb' and 'nas.jdb' files, as well as the 'txnstat.dct' file, to the second mirror's directory before starting the

second mirror server. Be sure the first mirror server is shut down while copying the files.

HANDLE.NET (Ver. 7) Technical Manual

40

7 Using Custom Handle Storage

This section explains how to configure your HANDLE.NET server to use a database for handle storage other than the

built-in database. Instructions follow for using SQL, and in particular PostgreSQL.

7.1. Using a SQL Database for Storage

Using a SQL database as storage for a handle server allows greater control over data deposits as well as permitting

complex data query.

 7.1.1 Configuring the Handle Server

To configure a handle server with an SQL storage module, first run the Setup program for the HANDLE.NET software.

Once the setup process is completed, a directory will exist that contains the files necessary to run the new handle

server.

In the directory for the new handle server is a file named 'config.dct' that can be modified using a text editor. The

'config.dct' file contains all of the settings for the handle server. The 'config.dct' file has some server-wide settings as

well as several subsections that affect different parts of the server. For example, the 'config.dct' file for most handle

servers will have sections named hdl tcp config, hdl udp config and hdl http config. Each of these sections holds the

settings for one type of "listener" for the handle server.

Normal handle servers (as opposed to simple handle caching servers or http gateways) will also have a section named

server config that maintains the settings for the core part of the server. To tell the server to use an SQL backend for

storing and retrieving the handles, add the following value to the server config section:

storage_type = "sql"

Since the specified storage type for this handle server is SQL, some extra settings need to be provided. The following

subsection should also be added to the server config section:

sql_settings = {

sql_url = "jdbc:sybase:Tds:localhost:2638"

sql_driver = "com.sybase.jdbc.SybDriver"

sql_login = "sqluser"

sql_passwd = "sqlpassword"

sql_read_only = "no"}

You will need to change the values to suit your particular installation. Here is an informal description of what each item

in this section is for:

 sql url: This setting should specify the JDBC URL that is used to connect to the SQL database. Consult the

documentation for the database or JDBC driver for a description of what this setting should look like.

HANDLE.NET (Ver. 7) Technical Manual

41

 sql driver: This is the name of a Java™ class that contains the driver for the JDBC connection. Consult the

documentation for the database or JDBC driver for a description of what this setting should look like.

 sql login: The user name that should be used by the handle server to connect and perform operations on the

database.

 sql passwd: The password that should be used by the handle server to connect and perform operations on the

database.

 sql read only: a boolean setting (can be "yes" or "no") that indicates whether or not the server should ever need

to modify the database in any way. This is a safeguard used for query-only handle servers.

 7.1.2 Example SQL Tables

The default configuration assumes a specific database table setup. The following tables were used for RDBMS storage

using MySQL.

create table nas (

 na varchar(255) not null,

 PRIMARY KEY(na)

) ;

create table handles (

 handle varchar(255) not null,

 idx int4 not null,

 type blob,

 data blob,

 ttl_type int2,

 ttl int4,

 timestamp int4,

 refs blob,

 admin_read bool,

 admin_write bool,

 pub_read bool,

 pub_write bool,

 PRIMARY KEY(handle, idx)

);

These tables were used for Oracle.

create table handles (

create table nas (

http://www.mysql.com/

HANDLE.NET (Ver. 7) Technical Manual

42

na raw(512)

) ;

 create table handles (

 handle raw(512),

 idx number(10),

 type raw(128),

 data raw(600),

 ttl_type number(5),

 ttl number(10),

 timestamp number(10),

 refs varchar2(512),

 admin_read varchar2(5),

 admin_write varchar2(5),

 pub_read varchar2(5),

 pub_write varchar2(5)

) ;

7.1.3 Depositing Handles Outside the Handle Server

If you wish to create or modify handles in the SQL database using custom tools, rather than the handle server, you must

use all capital letters for data in the "handle" field, since the Handle System is case insensitive.

 7.1.4 Using Custom SQL Statements

It is also possible to specify the SQL that is used by the handle server to query the database. Changing these SQL

statements is required if you do not use the same setup as above. The SQL handle storage object used by the handle

server has default SQL statements that are used to query and update the database. To replace the default SQL

statements with custom statements, simply add the corresponding configuration setting to the sql settings section

described above. The following is a list of the SQL statements, their configuration setting, default values, and a short

description of what the statement is used for.

7.1.4.1 get handle stmt

Default:

select idx, type, data, ttl_type, ttl, timestamp, refs, admin_read, admin_write, pub_read, pub_write from

handles where handle = ?

 Description: This statement is used to retrieve the set of handle values associated with a handle

from the database.

Input: The name of the handle to be queried.

HANDLE.NET (Ver. 7) Technical Manual

43

Output:

idx positive integer value; unique across all values for the handle

type alphanumeric value; indicates the type of the data in each value

data alphanumeric value; the data associated with the value ttl type byte/short; 0=relative, 1=absolute

ttl numeric; cache timeout for this value in seconds (if ttl type is absolute, then this indicates the date/time of

expiration in seconds since Jan 1 0:00:00 1970.

timestamp numeric; the date that this value was last modified, in seconds since Jan 1 0:00:00 1970

refs alphanumeric; list of tab delimited index:handle pairs. In each pair, tabs that occur in the handle part are

escaped as \t.

admin read boolean; indicates whether clients with administrative privileges have access to retrieve the handle

value

admin write boolean; indicates whether clients with administrative privileges have permission to modify the

handle value

pub read boolean; indicates whether all clients have permission to retrieve the handle value

pub write boolean; indicates whether all clients have permission to modify the handle value

7.1.4.2 have na stmt

Default: select count(*) from nas where na = ?

Description: This statement is used to query whether or not the specified prefix is "homed" to this server.

Input: The prefix (eg 0.NA/12345)

Output: One row, with one field. The value of that field is >0 if this server is responsible for the given prefix, or

<=0 if not.

7.1.4.3 del na stmt

Default: delete from nas where na = ?

 Description: This statement is used to remove a prefix from the list of prefixes for which this server is responsible.

Input: The prefix handle (e.g., 0.NA/12345)

Output: None

7.1.4.4 add na stmt

Default: insert into nas (na) values (?)

Description: This statement is used to add a prefix to the list for which this server is

responsible.

HANDLE.NET (Ver. 7) Technical Manual

44

Input: The prefix to "home" (e.g., 0.NA/12345)

Output: None

7.1.4.5 scan handles stmt

Default: select distinct handle from handles

Description: This statement is used to get a list of all of the handles in the database.

Input: None

Output: a row for each distinct handle in the database.

7.1.4.6 scan by prefix stmt

Default: select distinct handle from handles where handle like ?

Description: This statement is used to get a list of all handles in the database that have a given prefix.

Input: The prefix, including the slash ('/') character

Output: A row for each distinct handle in the database that starts with the given prefix

7.1.4.7 scan nas stmt

Default: select distinct na from nas

 Description: This statement is used to get a list of distinct prefixes that call this server home.

Input: None

Output: A row for each distinct prefix

7.1.4.8 delete all handles stmt

Default: delete from handles

Description: This statement is used to delete all of the handles in the database (!) This is only used when the handle

server is acting as a secondary/mirror to a primary service and has gotten so far out of sync that it tries to delete and re-

copy the entire database from the primary.

Input: None

Output: None

7.1.4.9 delete all nas stmt

Default: delete from nas

HANDLE.NET (Ver. 7) Technical Manual

45

Description: This statement is used to delete all of the prefixes in the database. This is only invoked under the same

circumstances as delete all handles stmt.

Input: None

Output: None

7.1.4.10 create handle stmt

Default: insert into handles (handle, idx, type, data, ttl_type, ttl, timestamp, refs, admin_read, admin_write, pub_read,

pub_write) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

Description: This statement is used to insert a single handle value into the database.

Input: The fields of the handle and handle value, with the same order and type specified in the default

statement above. See get handle stmt for type information for each field.

Output: None

7.1.4.11 handle exists stmt

Default: select count(*) from handles where handle = ?

Description: This statement is used to query whether or not a given handle exists in the database.

Input: The handle being queried

Output: None

7.1.4.12 delete handle stmt

Default: delete from handles where handle = ?

Description: This statement is used to delete a given handle from the database.

Input: The handle being deleted

Output: None

7.1.4.13 modify value stmt

Default: update handles set type = ?, data = ?, ttl_type = ?, ttl = ?, timestamp = ?, refs = ?, admin_read = ?, admin_write

= ?, pub_read = ?, pub_write = ? where handle = ? and idx = ?

 Description: This statement is used to update a single handle value with new values. The value to update is identified

by the handle and index.

Input:

type - alphanumeric; the new type for the handle value

HANDLE.NET (Ver. 7) Technical Manual

46

data - alphanumeric; the new data value

ttl_type - byte/short int; indicates whether the cache timeout is specified in relative or absolute terms

(1=absolute, 0=relative)

ttl - numeric; indicates the cache timeout in seconds (if ttl type is absolute then the ttl indicates the expiration

date in seconds since Jan 1 0:00:00 1970

timestamp - numeric; date of the last modification to this handle value (should be the current date/time!)

refs - alphanumeric; tab delimited list of references for this handle value. See get handle stmt for encoding.

admin_read - boolean; indicates whether clients with administrative privileges have access to retrieve the

handle value

admin_write - boolean; indicates whether clients with administrative privileges have permission to modify the

handle value

pub_read - boolean; indicates whether all clients have permission to retrieve the handle value

pub_write - boolean; indicates whether all clients have permission to modify the handle value

7.2 Using PostgreSQL Database

The following instructions, provided courtesy of handle users at the Max Planck Institute for Psycholinguistics, are for

setting up a PostgreSQL database for handle storage.

As postgres: createuser -PEDA handleserver

Make sure to define a password for that user. Add to

/var/lib/pgsql/data/pg_hba.conf

host handlesystem handleserver 192.168.0.0/16 md5

(This assumes that your intranet uses 192.168.x.x IP addresses.)

Activate the new account: pg_ctl restart -D /var/lib/pgsql/data/

(You may, depending on your configuration, have to replace /var/lib/pgsql/data here and above with something else.)

As an alternative to pg_ctl restart you may use: /etc/init.d/postgresql restart

Create the database and make sure that it uses Unicode: createdb -O handleserver -E unicode handlesystem

Now use the psql shell to create the tables, etc.:

psql -h yourservername -U handleserver -d handlesystem

create table nas (na bytea not null, primary key(na));

create table handles (handle bytea not null, idx int4 not

null, type bytea, data bytea, ttl_type int2, ttl int4, timestamp int4, refs text, admin_read bool, admin_write bool,

pub_read bool,

pub_write bool, primary key(handle, idx));

HANDLE.NET (Ver. 7) Technical Manual

47

create index dataindex on handles (data);

create index handleindex on handles (handle);

grant all on nas,handles to handleserver;

grant select on nas,handles to public;

\q

The \q leaves psql. Note that many columns are bytes, not text.

To backup and restore your handle database, use:

to backup: pg_dump handlesystem -F t | gzip -c > handletable.tgz

to list: zcat handletable.tgz | pg_restore -F t -l

to restore: zcat handletable.tgz | pg_restore -F t

 (With "ddlutils", you can also backup / restore between various databases and XML files, which might be useful for

some people.)

To get a description of a database or table, in psql, use:

\d (describes the whole database)

\d tablename (describes one table)

(As usual, use \q to leave psql again. Note that psql also has nice features like history (cursor up/down) and tab

completion.)

To "defragment" and auto-tune for the current contents, use in psql: vacuum analyze handles;

Do this from time to time, especially after larger writes, to gain speed.

The config.dct section for a PostgreSQL database:

"storage_type" = "sql"

"sql_settings" = {

"sql_url" = "jdbc:postgresql://YourServerIPAddress/handlesystem"

"sql_driver" = "org.postgresql.Driver"

"sql_login" = "handleserver"

"sql_passwd" = "yourpassword"

"sql_read_only" = "no"

}

When you start the handle server, you must have the JDBC for your database in your classpath. You can place the jar

file (e.g. postgresql8jdbc3.jar) in the "lib" subdirectory of the unzipped HANDLE.NET distribution.

For the GUI, as usual:

HANDLE.NET (Ver. 7) Technical Manual

48

bin/hdl-admintool

On Windows: bin\hdl-admintool.bat

Note: These instructions are included courtesy of handle users at the Max Planck Institute for Psycholinguistics and Lund

University Libraries NetLab. It is possible that your settings may differ slightly from those in the examples above.

http://www.mpi.nl/
http://www.lub.lu.se/netlab/
http://www.lub.lu.se/netlab/

HANDLE.NET (Ver. 7) Technical Manual

49

8. The Handle HTTP Proxy

Proxy servers are not part of any Handle System administration or authentication hierarchy. The Handle System protocol

does not authenticate any response from a proxy server. Use of a proxy server is a client option, and the client may have

to rely on the proxy server to authenticate any service response from Handle System service components. Clients are

responsible for setting up their own trust relationship with the proxy server they select.

 8.1 Using the Proxy

Unless you disabled the http interface after setting up your handle server, handles can be directly resolved on your

handle server using a web browser. A handle server used in this manner is often referred to as a proxy server.

Using HTTP URLs allows handles to be resolved from standard web browsers without additional client software, but

requires that the handles be associated with a specific proxy server. If that proxy server changes its DNS name or

otherwise becomes invalid, the reference (i.e., the HTTP URL) to the handle will break. Thus selection or use of proxy

servers should be carefully evaluated.

You can connect to your server's HTTP interface by opening a URL like http://127.0.0.1:8000. Replace 127.0.0.1 with the

IP address or hostname of your handle server. If you changed the HTTP port for the server, replace 8000 with the correct

port number. You should see a page like the one below.

Figure 8.1: Proxy Web Form

HANDLE.NET (Ver. 7) Technical Manual

50

Please note that this web form is not part of the standard HANDLE.NET protocol and may change or be completely

removed from future versions of the software.

It is also possible to build URLs to the proxy which will automatically resolve or redirect to a specified handle. For a

handle server with an IP address of 127.0.0.1 and HTTP interface port 8000 the handle 'my_handle00' can be resolved

from a web browser through the URL http://127.0.0.1:8000/my_handle.

If the 'allow_recursion' option is set in the server's configuration (config.dct) file, the HTTP interface will allow resolution

of handles which are not stored on the local handle server. When a client requests an external handle, the handle server

will resolve the handle and return the results, just as if it were stored locally. This is how public proxy servers like

hdl.handle.net and dx.doi.org are configured. If 'allow_recursion' is disabled, the proxy will only allow resolution of

handles stored on the local handle server.

 8.2 Using Custom HTML Pages

The HANDLE.NET proxy code supports customization of the query, response and error pages. Simple customization of

the pages can be performed by modifying copies of the template files included in the 'handle.jar' file. These templates

are located in the jar directory 'net/handle/server/html'.

If new templates are created, the server configuration must be modified to use them. See Section 4.1, hdl_http_config

for instructions.

8.3 Web Interface for Handle Administration

The HANDLE.NET distribution comes with Java™ servlets for handle administration. These servlets are meant to run in a

web server using a Java™ servlet engine like Apache Tomcat.

To compile servlets, get the servlet API classes by installing the JSDK (Java™ Servlet Development Kit) and include the

JSDK classes in your CLASSPATH. (For information see http://java.sun.com/products/servlet/.

These servlet API classes may be included with servlet engines like Apache Tomcat as a jar file (usually "servlet-api.jar").

If you already have a servlet engine, simply add the jar file to your CLASSPATH to compile servlets.

Instructions for use:

1. Install Java™ version 5 or greater on your computer.

2. You will need to have a web server that supports Java™ servlets.

3. Download, gunzip, and untar the HANDLE.NET distribution.

4. Extract the 'src.jar' file from the handle server directory. The files for setting up the web interface are in

'net/handle/apps/admin_servlets'. The servlet code, for web administration and handle resolution, is four files,

http://jakarta.apache.org/tomcat/
http://java.sun.com/products/servlet/

HANDLE.NET (Ver. 7) Technical Manual

51

and there is one corresponding 'htdocs' directory containing HTML files that will be returned from the

servlet/proxy.

5. In 'Admin.java', change the value of the YOUR_NAMING_AUTHORITY variable to your prefix. Change the value of

the 'ADMIN_NA' variable to your administrative handle. The default index values for SEC_KEY_IDX is 300 and

ADMIN_GROUP_IDX is 200. Include the 'handle.jar' file and the servlet library from your servlet engine (usually

'jsdk.jar') with your CLASSPATH variable. Compile 'Admin.java'.

6. You will need to modify the HTML files under

 'net/handle/apps/admin_servlets/htdocs'

to fit your specific purpose. Change the email address and prefix found in the following html files:

admin_footer.html, admin_login.html, help.html, index.html, qform.html.

7. 'Admin.java' uses two parameters, TEMPLATE_DIR_KEY and BATCH_DIR_KEY, which are specified in the servlet

properties file.

 TEMPLATE_DIR_KEY: path to html files

 BATCH_DIR_KEY: path to batch directory

8. In an Apache JServ setup, the zone.properties file should be modified as follows:

 servlet.net.handle.apps.admin_servlet.Admin.initArgs=

 admin_servlets.html_template_dir=<path to the html files>,

 admin_servlets.dir=<path to the batch directory>

9. In an Apache Jakarta Tomcat setup, the web.xml file should be modified as follows:

 <initparam>

 <paramname>webadmin_servlets.html_template_dir</paramname>

 <paramvalue><path to the html files></paramvalue>

 <paramname>webadmin_servlets.batch_dir</paramname>

 <paramvalue><path to the batch directory></paramvalue>

 </initparam>

10. Add the servlet files to your web server or servlet engine.

11. To access the Admin servlet, use the following syntax:

http://host/servlets/net.handle.apps.admin_servlets.Admin

You need to add the servlet files to your web server or servlet engine.

See configuration file for mount point for servlet zones.

HANDLE.NET (Ver. 7) Technical Manual

52

After setting up and accessing the administration servlet you must login. The administration servlet uses secret key

authentication. Create an administrative handle for use in the servlet. For example, if you plan to administer handles

under the prefix 0.NA/345678, create the handle 345678/admin to use for web administration. Create the handle with

the following values using one of the handle administration tools described in Chapter 3:

 An HS_ADMIN value at index 100, with Admin ID Handle=345678/admin, Admin ID Index=300 and any

permissions you want.

 An HS_SECKEY value at index 300 with any value, e.g., "secretkey". This value will be your login password.

The handle (345678/admin) must be added to the admin group list in the prefix record on GHR.

When you access the administration servlet through your web browser, do the following to log in:

 Handle Prefix: 345678

 User ID: admin

 Password: your_secretkey

HANDLE.NET (Ver. 7) Technical Manual

53

9 Handle Clients & the Client Library (Java™ Version)

 Communicating with the Handle System is accomplished by sending requests to servers which then return a response.

To resolve a handle, a ResolutionRequest is sent to a server. To create a handle, a CreateHandleRequest is sent. To

modify, remove, or add values to (or from) a handle, a ModifyValueRequest, RemoveValueRequest, or AddValueRequest

is sent to a server.

There is an object for each of these requests in the net.handle.hdllib java package. One way to send these messages to a

server is to use a HandleResolver object which is located in the net.handle.hdllib package. For most messages, the

HandleResolver object will locate the server that your messages should go to, send them, and return the response that

was sent by the server. The following is an example that shows one way of programmatically resolving a handle:

import net.handle.hdllib.*;

...

// Get the UTF8 encoding of the desired handle.

byte someHandle[] = Util.encodeString("45678/1");

// Create a resolution request.

// (without specifying any types, indexes, or authentication info)

ResolutionRequest request =

 new ResolutionRequest(someHandle, null, null, null);

HandleResolver resolver = new HandleResolver();

// Create a resolver that will send the request and return the

 response.

AbstractResponse response = resolver.processRequest(request);

// Check the response to see if the operation was successful. if(response.responseCode ==

AbstractMessage.RC_SUCCESS) {

// The resolution was successful, so we'll cast the response

// and get the handle values.

 HandleValue values[]

 =((ResolutionResponse)response).getHandleValues();

 for(int i=0; i < values.length; i++) {

 System.out.println(String.valueOf(values[i]));

 }

}

HANDLE.NET (Ver. 7) Technical Manual

54

To simply resolve a handle, the much simpler resolveHandle method of the HandleResolver can be used, as shown

below.

import net.handle.hdllib.*;

...

HandleValue values[] =

 new HandleResolver().resolveHandle("12345/1", null, null); for(int i=0; i < values.length; i++){

 System.out.println(String.valueOf(values[i]));

}

The HANDLE.NET software distribution include a "simple" package with command line tools to create, delete, and list

handles. It also includes programs to home a prefix and trace handle resolution. These programs provide a good starting

point and simple guide to developing Java™-based custom handle client software with the API. Each example program

includes steps needed to form a handle request to send to a handle server. The programs are run from the command

line and require certain arguments. The following commands should be run from the directory containing the "bin"

directory.

(1) Create Handle:

Simple tool for handle creation. It uses public key authentication.

bin/hdl-create <auth handle> <auth index> <privkey> <handle>

On Windows: bin\hdl-create.bat <auth handle> <auth index> <privkey> <handle>

(2) Delete Handle:

Simple tool for handle deletion. It uses public key authentication.

bin/hdl-delete <auth handle> <privkey> <filename_of_file_with_handles_to_delete>

On Windows: bin\hdl-delete.bat <auth handle> <auth index> <privkey> <handle>

(3) List Handles:

Simple tool for listing handles. It uses public key authentication.

bin/hdl-list <auth handle> <auth index> <privkey> <prefix>

On Windows: bin\hdl-list.bat <auth handle> <auth index> <privkey> <prefix>

(4) Trace handle:

Simple tool for resolving a handle.

bin/hdl-trace <handle>

HANDLE.NET (Ver. 7) Technical Manual

55

On Windows: bin\hdl-trace.bat <handle>

(5) Home Prefixes:

Simple tool for homing Prefixes. It uses public key authentication.

bin/hdl-home-na <auth hdl> <privkey> <server ip> <NA handle>

On Windows: bin\hdl-home-na.bat <auth hdl> <privkey> <server ip> <NA handle>

HANDLE.NET (Ver. 7) Technical Manual

56

10. Configuring an Independent Handle Service

An independent or private handle service (such as a service maintained behind a firewall that is not publicly accessible)

operates without contacting the Global Handle Registry. Configuring an independent service requires changes to the

client for resolution to occur, and to the server for enabling authentication, homing and administrative tasks to be

performed without the GHR.

Resolution Service Providers who wish to operate an independent handle service must notify the Handle System

Administrator in advance.

10.1 Client Configuration Details

This section explains how to configure the java client software to resolve handles locally, either through a

resolution/caching server, or by directing specific prefixes to a certain service/site.

To specify a local handle server that should be used to process all resolution requests, follow these instructions:

Copy the siteinfo.bin file that describes the site/server where all resolution should be performed into a file called

"resolver_site" in the ".handle" sub-directory of the user’s "home" directory. This will cause all non-administrative

requests to be sent through the site described by siteinfo.bin. This should make resolution faster for organizations that

can use the resolution server as a shared cache.

By default, no administrative messages are sent through this site (because administration must be done directly with the

site that is responsible for each prefix and cannot be "tunneled".) To force all messages (including administration

messages) to go to the local resolution server described above, the user must specify the prefixes that are "homed" on

the resolution server. All other prefixes will bypass the local resolution server. To specify the prefixes, do the following:

Create a file called "local_nas" in the ".handle" sub-directory of the users home directory. This file should contain one

prefix handle on each line (e.g., "0.NA/11234"), encoded in UTF8 (ASCII is OK as long as there are no special characters).

Every request for a handle having a prefix contained in this file will be sent to the local resolution site. If no resolver_site

file is provided, the local_nas file is ignored.

If there is more than one local handle gateway the methods described in the previous sections will not work. In this case

a local_info file must be placed in the .handle directory on each local client machine. This file is prepared using a special

utility that can be invoked using the command:

bin/hdl-local-info

On Windows: bin\hdl-local-info.bat

This tool allows creation of a local_info file by creating a list of local handle gateways. For each gateway, use the "Load

From File" button in the tool to import the siteinfo.bin file from the gateway’s handle server directory. Once the site

information is loaded, use the "Add" button in the Naming Authorities section to create a list of prefixes this gateway

should be responsible for.

HANDLE.NET (Ver. 7) Technical Manual

57

Once the site information and naming authority list has been set for each local handle gateway, you can use the "Save to

File" button on the main window to save your local_info file.

10.2 Server Side Configuration

By default, authentication, homing, and administering handles on a handle server require your handle server to

communicate with the Global Handle Registry. This section describes how to configure your handle server so that

administration of handles can be done without communicating with the Global Handle Registry.

(1) Modify the config.dct file:

"server_admin_full_access" = "y"

"allow_na_admins" = "no"

(2) To home a prefix on your handle server without contacting the Global Handle Registry, add the prefix to the handle

storage using the DBTool (See Chapter 5.1, DBTool).

(3) Once a prefix has been homed, create a new admin handle for it. (The default admin handle is the prefix itself. This

default value cannot be used because it requires communication with the Global Handle Registry.) Create the new

admin handle using the DBTool, and associate a secret key (password) with it at index 300. For example, if your prefix is

1234, add 0.NA/1234 to the homed prefixes using the DBTool, then create the new admin handle 1234/ADMIN (use

upper case when using the DBTool) with a secret key at index 300.

(4) Edit the config.dct file to change the "server_admins" entry to the new admin handle.

(5) Restart the server.

HANDLE.NET (Ver. 7) Technical Manual

58

11. Template Handles

A single template handle can be created as a base that will allow any number of extensions to that base to be resolved

as full handles, according to a pattern, without each such handle being individually registered. This would allow, for

example, the use of handles to reference an unlimited number of ranges within a video without each potential range

having to be registered with a separate handle. If the pattern needs to be changed, e.g., the video moves or a different

kind of server is used to deliver the video clips, only the single base handle needs to be changed to allow an unlimited

number of previously constructed extensions to continue to resolve properly.

When a server receives a resolution request for a handle which is not in its database, it tries to determine if there is

template for constructing the handle values.

11.1 The Template Delimiter

First, it looks for a template delimiter, which is a string dividing the original handle into a base and an extension. The

delimiter is generally defined in an HS_NAMESPACE value of the prefix handle 0.NA/prefix.

An example:

<namespace>

<template delimiter="@" />

</namespace>

If there is no namespace info, the server will use the "namespace" value in the "server_config" section of its config.dct

configuration file. If there is no value, or if no template delimiter is defined in the namespace (either from the prefix or

the config file) the server will use the "template_delimiter" value in the "server_config" section of config.dct.

If a delimiter is found, the server looks up the base handle (i.e., the part before the delimiter). For example, in

cnri.test.1/weather@foo, with delimiter @, the base handle is cnri.test.1/weather and the extension is foo.

A delimiter of "/" will enable an entire prefix to be templated. In this case the base handle is considered to have no

values.

11.2 Template construction

Any HS_NAMESPACE value in the base handle will override any prefix namespace info — in particular, templates can be

put directly into the base handle.

If there is a namespace, it is used to construct the values of the template handle. Each <template> element within the

namespace is applied in order. If no template is found, enclosing parent namespaces are tried. If no template is found at

all, the server returns "handle not found".

HANDLE.NET (Ver. 7) Technical Manual

59

(1) The template XML itself will contain <value> tags defining the handle values of the eventual result. The <value>

tags can specify index, type, and data using attributes. The values of these attributes can refer to the parameters

"${handle}", "${base}" and "${extension}". Data can also be specified as the contents of the <value> tag, instead

of as an attribute.

(2) Some <value> tags may only be conditionally part of the constructed handle; these are enclosed in <if> tags. The

only tests useable in an <if> are string equality and regular-expression matching. With a regular-expression

match, various submatches can be referred to in enclosed values with syntax like "${extension[2]}". There is also

an <else> tag.

Details of <if> syntax:

o value attribute is some parameter name (e.g., handle, base, extension; inside of a <foreach>, index,

type, or data). The syntax value="extension[2]" works inside a nested if.

o parameter attribute is the name of the parameter used to refer to submatches. Default is same as

value.

o test attribute is "equals" or "matches"

o negate="true" negates the test

o expression is the string used for equality comparison or RE matching.

(3) Any <notfound/> tag will cause the handle server to return "handle not found".

(4) With <def parameter="param"> ... </def> a new parameter ${param} can be defined. The value of the

parameter is obtained by processing the contents of the <def> tag as a template. The data of any constructed

handle value if the definition of the parameter. The simplest example is <def parameter="param"><value

data="foo"/></def> which defines ${param} to be foo.

(5) Finally, it is possible to produce a value or values for each value already in the base handle. This is useful for

having template handles which are identical to the base handle except perhaps for transforming the data of

some particular handle value (e.g. a URL). Any values enclosed in a <foreach> tag will be constructed for each

value of the base handle. Within the <foreach>, the parameters "${index}", "${type}", and "${data}" can be used

to refer to the original handle value from the base handle. Within a <foreach>, <value> tags can omit type or

data attributes, in which case the type or data from the original value will be used unchanged.

Here is an example.

 <namespace>

 <template delimiter="@">

 <foreach>

 <if value="type" test="equals" expression="URL">

 <if value="extension" test="matches" expression="box\(([^,]*),([^,]*),([^,]*),([^,]*)\)"

 parameter="x">

 <value data= "${data}?wh=${x[4]}&ww=${x[3]}&wy=${x[2]}&wx=${x[1]}" />

 </if>

HANDLE.NET (Ver. 7) Technical Manual

60

 <else>

 <value data="${data}?${x}" />

 </else>

 </if>

 <else>

 <value />

 </else>

 </foreach>

 </template>

 </namespace>

This example produces exactly one value for each value in the base handle. If the type of the original value is "URL", we

produce a new value with changed data; the new data depends on the format of the extension. An extension of the

form "box(#,#,#,#)" produces a new URL with the four values to be used as query parameters; any other extension is

appended as written onto the original URL. If the type of the original value is not "URL", the original value is used

unchanged.

For example, suppose we have the above namespace value in 0.NA/1234, and 1234/abc contains two handle values:

 1 URL http://example.org/data/abc

 2 EMAIL contact@example.org

Then 1234/abc@box(10,20,30,40) resolves with two handle values:

 1 URL http://example.org/data/abc?wh=40&ww=30&wy=20&wx=10

 2 EMAIL contact@example.org

For more on the RE language, see http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html.

11.3 Template handles by reference

XML of the form

 <template ref="10:abc/def" />

will be taken to refer to the handle value of index 10 of handle "abc/def". The data of the handle value is parsed as XML

and interpreted as above. Too much recursion, or a "handle not found" result, any resolution error, or failure to parse

the referenced tag, all lead to a "handle not found" result.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

HANDLE.NET (Ver. 7) Technical Manual

61

12. The 10320/loc Handle Type

For handles with multiple URL values, the proxy server (or web browser plug-in) simply selects the first URL value in the

list of values returned by the handle resolution. Because the order of that list is nondeterministic, there is no intelligent

selection of a URL to which the client would be redirected. The 10320/loc handle value type was developed to improve

the selection of specific resource URLs and to add features to the handle-to-URL resolution process. (Note that the prefix

'10320' has been set aside by the Handle System administrator for handle application types.)

Type 10320/loc specifies an XML-formatted handle value that contains a list of locations. Each location has a set of

associated attributes that help determine if or when that location is used. The overall list of locations can include hints

for how the resolving client should select a location, including an ordered set of selection methods. Resolvers can apply

each known selection method, in order, to choose a location based on the resolver's context (the HTTP request in the

case of the proxy server) and the attributes of each location.

The attributes for the set of locations, as well as each location entry in the set, are open-ended to allow for future

capabilities to be added in a backwards-compatible way. A small number of attributes have been defined as "standard"

that all resolvers should understand.

At the top level of the XML structure are the following defined attributes:

chooseby (optional)

The chooseby attribute identifies a comma-delimited list of selection methods. If no chooseby attribute

is specified then the default (currently "locatt,country,weighted") is assumed.

For each location the following attributes are defined:

href (required)

The URL for the location.

weight (optional)

The weight (from zero to one) that should apply to this location when performing a random selection.

Setting the weight attribute to zero results in the location not being selected unless a) it is explicitly

referenced by another attribute; b) there are no other suitable locations; or c) the location is selected

based on one of the other selection methods, such as country or language. If a location has no weight

attribute then it is assumed to have a weight of one.

The currently defined selection methods are:

locatt

Select only locations from an attribute passed in the proxy/handle-URI link. If someone constructs a link

as hdl:123/456?locatt=id:1 then the resolver will return the locations that have an "id" attribute of 1

(i.e., the second location in the resolution example below).

HANDLE.NET (Ver. 7) Technical Manual

62

country

Selects only locations that have a 'country' attribute matching the country of the client. If no matching

locations are found then this selects locations that have no country attribute (i.e., not a mismatch). The

Proxy determines the country of the client using a GeoIP lookup.

weighted

Selects a single location based on a random choice. The Proxy will observe the 'weight' attribute for each

location, which should be a floating point non-negative number. The weighting allows for a very basic

load balancing, but is also a way to ensure that some locations can only be addressed directly (for

example by country or locatt/attributes). If the weighted selection method is applied to locations that all

have non-positive weights, then this selects one of the remaining locations randomly while disregarding

location weights.

The Proxy will iterate over the known selection methods, in order, until a single location has been selected. After each

iteration the Proxy will take one of four steps:

 if there is only one remaining location element, it is returned as a redirect;

 if there are no remaining location elements, the Proxy reverts to the location elements as they were before the

last method was applied;

 if there are multiple location elements the Proxy will apply the remaining selection methods to those locations;

 if there are no more selection methods to try, the weighted random selection method is applied, which is

guaranteed to return a single location. In a sense, the weighted random is always the "fallback".

For handle 123/456, with a value type 10320/loc that has this list of location attributes:

 <locations>

 <location id="0" href="http://uk.example.com/" country="gb" weight="0" />

 <location id="1" href="http://www1.example.com/" weight="1" />

 <location id="2" href="http://www2.example.com/" weight="1" />

 </locations>

the following selections could be made:

Reference: 123/456 from a client located in the UK

Result: The "country" selection method selects the first location based on the 'country' attribute of the first

location and the client's position.

http://www.maxmind.com/app/ip-locate

HANDLE.NET (Ver. 7) Technical Manual

63

Reference: 123/456 from a client located outside the UK

Result: The "country" selection method removes the first location from consideration based on its 'country'

attribute and chooses one of the last two locations using the "weighted" random selection method.

Reference: 123/456?locatt=id:1

Result: The second location is used based on the "locatt" selection method and the 'id' attribute.

Reference: 123/456?locatt=id:0

Result: The first location is used based on the "locatt" selection method and the 'id' attribute. The resolver never

gets to the "country" selection method as the "locatt" selection method resulted in only a single matching

location.

Reference: 123/456?locatt=country:uk

Result: The first location is used based on the "locatt" selection method and the 'country' attribute.

Reference: 123/456?locatt=country:us

Result: The "country" selection method removes the first location from consideration based on its 'country'

attribute, finds no US-specific location, and chooses one of the last two locations using the "weighted" random

selection method.

